Properties of fuzzy sets

ROPERTIES OF A FUZZY SET

 
Recall that a fuzzy (sub)set A of a set of all possible (feasible, relevant) elements with respect to a fuzzy concept, say, X = {x}.

Then: A of X Þ A Ì X
                              ~
Þ {(x, mA (x)}
Similarly: B of x Þ B Ì X Þ {(x, mB (x)}
                                  ~



 
P1Equality of two fuzzy setsFuzzy set A is considered equal to a fuzzy set BIF AND ONLY IF (iff)
mA (x) = mB (x)
P2Inclusion of one set into another setFuzzy set AÌ X is included
                  ~
in (is a subset of) another fuzzy set, BÌX
                                                        ~IF AND ONLY IF (iff)
mA(x) £mB(x) " xΠX
  Example: Consider X = {1, 2, 3}and A = 0.3/1 + 0.5/2 + 1/3
B = 0.5/1 + 0.55/2 + 1/3
Then A is a subset of B
P3Cardinality of a fuzzy setCardinality of a non-fuzzy set, Z, is the number of elements in Z. BUT the cardinality of a fuzzy set A, the so-called SIGMA COUNT, expressed as a SUM of the values of the membership function of A, mA(x)Card A = mA(x1) + ….. +mA(xn)
    n
SmA(x1)
   i=1
  EXAMPLE
Card A = 1.8
Card B = 1.85
P4An empty fuzzy setA fuzzy set A is empty
IF AND ONLY IF
mA(x) = 0, " xΠX
P5a -cuts or a -level sets of a fuzzy setAn a -cut or a -level set of a fuzzy set 
Ì X is an
    ~
ORDINARY SET A X,
                                   ~
such that
Aa ={xΠX; mA(x)³a }
0£a£ 1
Decomposition A=Sa Aa
0£a£ 1
  Example: A=0.3/1 + 0.5/2 + 1/3
X = {1, 2, 3}
Then A0.5 = {2, 3}
A0.1 = {1, 2, 3}
A1 = {3}

No comments:

Post a Comment